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A DVTC builds discrete operators that preserve fundamental identities of continuum calculus. As a result, 
important mathematical and physical principles such as conservation laws and solution symmetries are 
easily incorporated in numerical models. In our recent paper [1], we completed development of a DVTC on 
arbitrary polyhedral meshes. The developed DVTC ensures that discrete models are consistent approxima-
tions of continuum models, leading to more accurate predictions.

Polyhedral meshes provide enormous flexibility for describing 
complex engineering models that arise in simulating dispersive 

transport in porous media, scattering of elastic waves from irregular 
interfaces in seismic imaging, and representing realistic surface 
topography in climate modeling. The developed discrete vector and 
tensor calculus (DVTC) ensures that discrete models are consistent 
approximations of continuum models, leading to more accurate 
predictions. 

Polyhedral meshes provide a path to a robust mesh generation and 
adaptation. These meshes eliminate the critical problems of tetrahedral 
meshes. Polyhedra are less sensitive to stretching than tetrahedra; 
therefore, they are more suitable for problems with boundary layers. 
Slivers, typical for major tetrahedral mesh generators, are easily 
eliminated by merging them with two or more tetrahedra. Adaptive 
and non-matching meshes, popular in engineering applications, result 
only in different types of polyhedra; therefore, no special treatment 
of hanging nodes is required for discretizations and solvers.

Polyhedra have many more neighbors than tetrahedra–for example, 
Kelvin's tetrakaidehedron has 14 faces and is considered the ideal 
prototype of a bubble in a dry, monodisperse foam. From one side, this 
increases the stencils of discrete operators, but from the other side, this 
makes the operators more accurate, reduces numerical diffusion, and 
allows information to propagate faster through the mesh, leading to an 
increased overall convergence rate. Finally, polyhedra cover the space 
more efficiently than tetrahedra and hexahedra and tend to minimize the 
inter-element surface area.

The DVTC is at the core of all mimetic discretization methods [1-3]. The 
numerical solution of a heat conduction problem is frequently performed 
using degrees of freedom (DOF) at mesh nodes. With these DOF, we may 
approximate the temperature gradient along each edge via a 
conventional finite difference. This results in a primary mimetic gradient 
operator, gradh , that acts from the space of node-based discrete 
functions to the space of edge-based discrete functions. The DVTC 
builds a dual of this operator, the discrete divergence operator, divh , 
that acts in the opposite direction [2]. The nodal-based discretization of 
the Laplace operator is divhgradh.

To enforce local mass balance in a diffusion problem, its mixed 
formulation is often used. Discretization of the divergence operator 
becomes trivial when face-based unknowns approximate normal 
components of flux. This results in a primary mimetic divergence 
operator, divh, that acts from the space of face-based discrete functions 
to the space of element-based discrete functions. The DVTC builds a 
dual discrete gradient operator, gradh, that acts in the opposite direction 
[3]. The cell-centered discretization of the Laplace operator is  
divhgradh .

For the Maxwell equations, natural DOF for the electric field are its 
tangential components on mesh edges. Such a definition of DOF results 
in a simple primary mimetic curl operator, curlh, that acts from the space 
of edge-based discrete functions to the space of face-based discrete 
functions. The DVTC builds a dual of this operator, curlh .

The DVTC preserves important mathematical identities such as  
curlhgradh = 0 and divh curlh = 0 and provides discrete Helmholtz 
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decomposition theorems. Note that dual operators are not unique, 
which explains the existence of various approaches to the development 
of a DVTC. Unique features of our approach are (1) the absence of 
constraints on the shape of polyhedra, and (2) consistency of 
arguments embedded in all derivations to guarantee accuracy of dual 
operators on arbitrary polyhedral meshes.

Future work will be focused on the development of an arbitrary-order 
accurate DVTC.

Fig. 1. A model of the C-shaped magnet 
consists of a copper slab wrapped 
around the core of a ferromagnetic 
material. The core is a cylinder of 
electric steel bent to form a C-shape. 
The core enhances the magnetic field 
produced by the circular current running 
in the copper. The model is meshed with 
a quasi-uniform hexahedral mesh (using 
package CUBIT) with about 50,000 
elements. The top picture shows a trace 
of the computational mesh. The bottom 
picture shows the magnetic induction. 
The arrows plotted at mesh nodes 
indicate the expected alignment of the 
magnetic field with the ferromagnetic 
core. Solution of this problem with 
equivalent tetrahedral mesh would 
require twice the unknowns.

Fig. 2. Location of node-based (top left), edge-based (top 
right), and face-based (bottom) degrees of freedom for a 
hexahedron.
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